|
The equation of time describes the discrepancy between two kinds of solar time. These are ''apparent solar time'', which directly tracks the motion of the sun, and ''mean solar time'', which tracks a fictitious "mean" sun with noons 24 hours apart. Apparent (or true) solar time can be obtained by measurement of the current position (hour angle) of the Sun, or indicated (with limited accuracy) by a sundial. ''Mean'' solar time, for the same place, would be the time indicated by a steady clock set so that over the year its differences from apparent solar time average to zero.〔''Nautical Almanac'' 1767〕 The equation of time is the east or west component of the analemma, a curve representing the angular offset of the Sun from its mean position on the celestial sphere as viewed from Earth. The equation of time values for each day of the year, compiled by astronomical observatories, were widely listed in almanacs and ephemerides.〔Milham 1945, pp. 11–15〕〔See for example, British Commission on Longitude 1794, p. 14.〕 ==The concept== During a year the equation of time varies as shown on the graph; its change from one year to the next is slight. Apparent time, and the sundial, can be ahead (fast) by as much as 16 min 33 s (around 3 November), or behind (slow) by as much as 14 min 6 s (around 12 February). The equation of time has zeros near 15 April, 13 June, 1 September and 25 December. Ignoring very slow changes in the Earth's orbit and rotation, these events are repeated at the same times every tropical year. However, due to the non-integer number of days in a year, these dates can vary by a day or so from year to year.〔As an example of the inexactness of the dates, according to the U.S. Naval Observatory's ''Multiyear Interactive Computer Almanac'' the equation of time was 0 at 2:00 UT1 on 16 April 2011.〕〔Heilbron 1999, p. 277.〕 The graph of the equation of time is closely approximated by the sum of two sine curves, one with a period of a year and one with a period of half a year. The curves reflect two astronomical effects, each causing a different non-uniformity in the apparent daily motion of the Sun relative to the stars: * the obliquity of the ecliptic (the plane of the Earth's annual orbital motion around the Sun), which is inclined by about 23.44 degrees relative to the plane of the Earth's equator; and * the eccentricity of the Earth's orbit around the Sun, which is about 0.0167. The equation of time is constant only for a planet with zero axial tilt and zero orbital eccentricity. On Mars the difference between sundial time and clock time can be as much as 50 minutes, due to the considerably greater eccentricity of its orbit. The planet Uranus, which has an extremely large axial tilt, has an equation of time that makes its days start and finish several hours earlier or later depending on the time of its solar year orbital period. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「equation of time」の詳細全文を読む スポンサード リンク
|